Aktuelle Seite:
Vorlesung + Übung: Einführung in die Optimierung - Optimierung I - Details

  • Detaillierte Informationen über die Veranstaltung werden angezeigt, wie z.B. die Veranstaltungsnummer, Zuordnungen, DozentInnen, TutorInnen etc. In den Detail-Informationen ist unter Aktionen das Eintragen in eine Veranstaltung möglich.

  • link-extern Weiterführende Hilfe
Sie sind nicht angemeldet.

Lehrveranstaltung wird online/digital abgehalten. Online/Digitale Veranstaltung Einführung in die Optimierung - Optimierung I

Allgemeine Informationen

Veranstaltungsnummer MTH-1140, -1120, -7940
Semester SS 2020
Heimat-Einrichtung Diskrete Mathematik, Optimierung und Operations Research
beteiligte Einrichtungen Institut für Mathematik, Mathematisch-Naturwissenschaftlich-Technische Fakultät
Veranstaltungstyp Vorlesung + Übung in der Kategorie Lehre
Erster Termin Tue , 21.04.2020 10:00 - 11:30, Ort: (T-1001)
Teilnehmende Bachelor Wirtschaftsmathematik,
Bachelor Mathematik,
Lehramt Gymnasium mit Schwerpunkt Mathematik
Voraussetzungen Analysis I und II, Lineare Algebra I und II (insbesondere Analytische Geometrie)
Lernorganisation Für das Studium Bachelor Wirtschaftsmathematik ist dies eine Pflichtveranstaltung.
Im Bachelor-Studiengang Mathematik ist dies (mit 9 LP) eine Wahlpflichtvorlesung.
Leistungsnachweis Dreistündige Klausur
Online/Digitale Veranstaltung Veranstaltung wird online/digital abgehalten.
Hauptunterrichtssprache deutsch
Literaturhinweise eigenes Vorlesungsskript

Weitere Begleitliteratur wird in der Vorlesung angegeben.
Sonstiges Organisatorisch werden die Übungen zur Vorlesung so durchgeführt, dass zunächst die gesamten Teilnehmer auf kleinere überschaubare Übungsgruppen aufgeteilt werden, die zweistündig (einmal pro Woche) stattfinden.

In den Übungsgruppen werden Aufgaben mit aktuellem Bezug zur Vorlesung unter Anleitung von studentischen Übungsleitern selbständig bearbeitet.

Im Rahmen der Übungen wird weiterhin wöchentlich ein Hausaufgabenblatt herausgegeben, welches innerhalb einer Woche schriftlich zu bearbeiten und abzugeben ist; dieses Übungsblatt wird von studentischen Hilfskräften korrigiert und ausführlich besprochen.
ECTS-Punkte 9

Lehrende

Tutor/-innen

Zeiten

Dienstag: 10:00 - 11:30, wöchentlich (ab 04/21/20)
Donnerstag: 10:00 - 11:30, wöchentlich (ab 04/23/20)

Veranstaltungsort

(T-1001)

Studienbereiche

Kommentar/Beschreibung

Diese Vorlesung eröffnet einen zweisemestrigen Bachelor-Zyklus zu grundlegenden Themenbereichen aus der mathematischen Optimierung und aus der Diskreten Mathematik. Prinzipiell geht es darum, eine reellwertige Zielfunktion unter Einhaltung vorgegebener Nebenbedingungen, die die Variablen erfüllen müssen, zu maximieren oder zu minimieren. Je nach Art der Zielfunktion und des durch die Nebenbedingungen definierten Zulässigkeitsbereiches unterscheidet man in lineare, in nichtlineare, in kombinatorische oder in ganzzahlige Optimierung.

In dem im Sommersemester 2018 zu behandelnden ersten Teil werden wir uns hauptsächlich mit der Linearen Optimierung beschäftigen: Die Zielfunktion ist eine lineare Abbildung und der Zulässigkeitsbereich ist ein Polyeder, also der Durchschnitt von endlich vielen Halbräumen. Neben der Strukturtheorie von Polyedern und der Dualitätstheorie linearer Programme bildet die algorithmische Behandlung des Linearen Optimierungsproblems, konkret der Simplexalgorithmus ein zentrales Thema dieser Vorlesung.

Teilnehmerzahlen

Aktuelle Anzahl der Teilnehmenden 145