Digicampus
Lecture: Codierungstheorie - Details
You are not logged into Stud.IP.
Lehrveranstaltung wird in Präsenz abgehalten.

General information

Course name Lecture: Codierungstheorie
Course number MTH-1950
Semester SS 2023
Current number of participants 20
Home institute Diskrete Mathematik, Optimierung und Operations Research
participating institutes Institut für Mathematik
Courses type Lecture in category Teaching
First date Tuesday, 18.04.2023 10:00 - 11:30, Room: (L/1007)
Participants Master Mathematik und Wirtschaftsmathematik
Pre-requisites Lineare Algebra I und II, Grundlagen der Algebra, der Kombinatorik und der elementaren Zahlentheorie.
Learning organisation Nach einer Einführung und der Formulierung der Hauptproblemstellung verfolgen wir in dieser Vorlesung das Ziel, einige der wichtigsten Klassen von (optimalen) Codes zu beschreiben:
• Dazu zählen zunächst die Hamming-Codes und die Reed-Solomon Codes, die auch zur allgemeineren Familie der zyklischen Codes gehören.
• Die Reed-Muller-Codes dienen als Ausgangspunkt für die Konstruktion der (optimalen) Kerdock- und Preparata-Codes.
• Die grundlegenden Goppa-Codes sind im Rahmen der Funktionenkörper-Codes mittlerweile vielfach verallgemeinert worden.
Performance record Mündl.Prüfung
Online/Digitale Veranstaltung Veranstaltung wird in Präsenz abgehalten.
Hauptunterrichtssprache deutsch
Literaturhinweise Folgende Liste ist lediglich eine kleine Auswahl. Wir werden zusammen mit dem Vorlesungsskript eine umfassendere Literaturliste ausgegeben.
• Rudolf Lidl and Harald Niederreiter, Introduction to Finite Fields and their Applications, Cambridge University Press, Cambridge, 1994 (revised edition).
• Oliver Pretzel, Error-Correcting Codes and Finite Fields, Clarendon Press, Oxford, 1992.
ECTS points 6

Rooms and times

(L/1007)
Tuesday: 10:00 - 11:30, weekly (13x)
Thursday: 10:00 - 11:30, weekly (12x)

Comment/Description

Die Codierungstheorie ist eine relativ junge mathematische Disziplin, die sich mit dem Entwurf von optimalen fehlererkennenden und fehlerkorrigierenden Codes beschäftigt. Solche Codes werden überall dort verwendet, wo Informationen (bildlich gesprochen) über einen gestörten Nachrichtenkanal übertragen werden: Durch eine geeignete Codierung der Information vor der Sendung, ist es möglich, auch bei Verfälschung die ursprüngliche Nachricht zu rekonstruieren.

Zu den wichtigsten Anwendungen gehören die Übertragung von Satellitenbildern sowie die Verbesserung der Qualität beim Abspielen von Compact Discs. Der mathematische, Reiz der Codierungstheorie liegt im Zusammenspiel von Algebra, Kombinatorik und Zahlentheorie, zumal die sog. linearen Codes über endlichen Körpern sehr erfolgreich in der Praxis eingesetzt werden.

Lernziele / Kompetenzen:
Algebra, Kombinatorik und Zahlentheorie sind klassische Kerngebiete der Mathematik. An dem konkreten Beispiel der Codierungstheorie sollen die Studierenden erkennen, dass durch das Zusammenspiel sehr interessante praktische Problemstellungen adäquat modelliert und gelöst werden können.