Vorlesung: Introduction to Biomedical Systems Modeling and Data Science - Details

Vorlesung: Introduction to Biomedical Systems Modeling and Data Science - Details

Sie sind nicht in Stud.IP angemeldet.

Allgemeine Informationen

Veranstaltungsname Vorlesung: Introduction to Biomedical Systems Modeling and Data Science
Veranstaltungsnummer INF-0516
Semester WS 2024/25
Aktuelle Anzahl der Teilnehmenden 12
Heimat-Einrichtung Lehrstuhl für Modellierung und Simulation biologischer Prozesse - Prof. Dr. Andreas Raue
Veranstaltungstyp Vorlesung in der Kategorie Lehre
Nächster Termin Mittwoch, 27.11.2024 08:15 - 09:45, Ort: (Seminarraum 1055-N)
Voraussetzungen For the computer practice, the plan is to mainly use Python and Jupyter Notebooks. Knowledge of standard packages (such as numpy, scipy, scikit-learn, pandas, matplotlib, etc.) and the creation of virtual environments (conda) would be ideal but can also be developed during the course. In principle, participants can also use other programming languages to complete the tasks (e.g., R), but no “hands-on” support can be provided for those.
Veranstaltung findet in Präsenz statt / hat Präsenz-Bestandteile Ja
Hauptunterrichtssprache englisch
Weitere Unterrichtssprache(n) deutsch
Literaturhinweise For further reading, not a blueprint for this lecture!

- "Introduction to Machine Learning" by Ethem Alpaydin
- "Machine Learning" by Tom M. Mitchell
- "Introduction to System Biology" by Edda Klipp
- "A First Course in Systems Biology" by Eberhard O. Voit
ECTS-Punkte 5

Räume und Zeiten

(Seminarraum 1055-N)
Mittwoch: 08:15 - 09:45, wöchentlich (14x)

Modulzuordnungen

Kommentar/Beschreibung

Part 1: Data Science
- Introduction Biomedical Data Science, Omics, statistics and data visualizations
- Differential (gene expression) analysis, statistical testing, correlation
- Clustering, heatmaps, dendrograms, linear models
- Gene set enrichment analysis, nonlinear models, neural network models

Part 2: Systems Modeling
- Introduction to mechanistic models and dynamical systems
- Formalism for ordinary differential equation models
- Numerical solvers and modeling biochemical reactions
- Cellular signaling models and model parameterization