Current page:
Lecture: Bayesian Networks - Details

  • Detaillierte Informationen über die Veranstaltung werden angezeigt, wie z.B. die Veranstaltungsnummer, Zuordnungen, DozentInnen, TutorInnen etc. In den Detail-Informationen ist unter Aktionen das Eintragen in eine Veranstaltung möglich.

  • link-extern Further help
You are not logged in.

Bayesian Networks

General information

Course number INF-0088
Semester SS 2019
Home institute Multimedia und maschinelles Sehen
Courses type Lecture in category Teaching
First appointment Tue , 23.04.2019 14:00 - 15:30, Room: (2045-N)
Hauptunterrichtssprache deutsch

Lecturers

Times

Tuesday: 14:00 - 15:30, weekly (from 23/04/19)

Course location

(2045-N)

Fields of study

Comment/Description

Probability theory is a powerful tool for inferring the value of missing variables given a set of other variables. As the number of variables in a system increases, the joint probability distribution over these variables becomes overwhelmingly large. In this lecture we examine the implications of factoring one large joint probability distribution into a set of smaller conditional distributions by exploiting independencies between variables and study suitable algorithms for inference.

For additional information, see:
http://www.multimedia-computing.de/wiki/SS_19_Bayesian_Networks

attendance

Current number of participants 52