Vorlesung + Übung: Riemannsche Flächen - Details

Vorlesung + Übung: Riemannsche Flächen - Details

Sie sind nicht in Stud.IP angemeldet.

Allgemeine Informationen

Veranstaltungsname Vorlesung + Übung: Riemannsche Flächen
Semester SS 2015
Aktuelle Anzahl der Teilnehmenden 6
Heimat-Einrichtung Algebra und Zahlentheorie
beteiligte Einrichtungen Institut für Mathematik
Veranstaltungstyp Vorlesung + Übung in der Kategorie Lehre
Erster Termin Mittwoch, 15.04.2015 12:15 - 13:45, Ort: (1007L)
Teilnehmende Studierende im Bachelor oder Master Mathematik
Voraussetzungen Gute Kenntnisse in Analysis I und II, Kenntnisse in Funktionentheorie;
Elementare Kenntnisse in Analysis III, Topologie, Differentialgeometrie oder Algebra sind hilfreich, aber nicht zwingend nötig.
Leistungsnachweis Portfolioprüfung, Genaueres wird noch bekannt gegeben.
Veranstaltung findet online statt / hat Remote-Bestandteile Ja
Hauptunterrichtssprache deutsch
Literaturhinweise Otto Forster: Lectures on Riemann Surfaces

Räume und Zeiten

(1007L)
Mittwoch: 12:15 - 13:45, wöchentlich (14x)
Freitag: 12:15 - 13:45, wöchentlich (13x)
Freitag: 14:00 - 15:30, wöchentlich (13x)

Kommentar/Beschreibung

In der klassischen Funktionentheorie wird der Begriff des Gebietes eingeführt. Anschließend werden die holomorphen Funktionen auf diesen zusammenhängenden offenen Teilmengen der komplexen Zahlenebene studiert. In der Theorie der Riemannschen Flächen werden Gebiete allgemeiner als 1-dimensionale komplexe Mannigfaltigkeiten verstanden und alle 1-dimensionalen komplexen Mannigfaltigkeiten, also reell zweidimensionale Flächen mit einer komplexen Struktur, studiert. Dadurch werden zum Beispiel Riemannsche Zahlenkugel und die komplexen Tori systematisch zu Objekten der Funktionentheorie. Mit diesem Begriff und dem Begriff der verzweigten Überlagerung lassen sich systematisch Monodromien und Mehrdeutigkeit holomorpher Funktionen auflösen. Es zeigt sich, daß kompakte Riemannsche Flächen schon durch algebraische, also durch Polynomgleichungen gegeben sind, so daß hier die Theorie mit der Theorie der algebraischen Kurven übereinstimmt, ein Teilgebiet der algebraischen Geometrie.
Folgende Themen werden unter anderem angesprochen werden:
Riemannsche Flächen
Garben
Differentialformen
Kohomologiegruppen
Dolbeaultsches Lemma
Endlichkeitssatz
Die exakte Kohomologiesequenz
Der Riemann-Rochsche Satz
Der Serresche Dualitätssatz
Funktionen und Differentialformen mit vorgegebenen Hauptteilen
Harmonische Differentialformen
Der Abelsche Satz
Das Jacobische Inversionsproblem
Ausblicke