Vorlesung: Theoretische Biophysik (Teil 1) - Details

Vorlesung: Theoretische Biophysik (Teil 1) - Details

Sie sind nicht in Stud.IP angemeldet.

Allgemeine Informationen

Veranstaltungsname Vorlesung: Theoretische Biophysik (Teil 1)
Veranstaltungsnummer PHM-0085
Semester WS 2020/21
Aktuelle Anzahl der Teilnehmenden 0
erwartete Teilnehmendenanzahl 10
Heimat-Einrichtung Institut für Physik
Veranstaltungstyp Vorlesung in der Kategorie Lehre
Erster Termin Montag, 02.11.2020 10:00 - 11:30
Teilnehmende Studierende Master Physik und Mathematik
Voraussetzungen Gute Kenntnisse der Statistischen Physik
Lernorganisation Dauer: 2 Semester (jeweils 2 SWS Vorlesung, 1 SWS Übung )

Die Vorlesung findet über "zoom" statt.
Leistungsnachweis Bestehen der Modulprüfung
Veranstaltung findet online statt / hat Remote-Bestandteile Ja
Hauptunterrichtssprache englisch
Weitere Unterrichtssprache(n) deutsch
Literaturhinweise • P. Nelson, Biological Physics: Energy, Information, Life (Freeman, New York, 2004)
• M. B. Jackson, Molecular and Cellular Biophysics (Cambridge University Press, 2006)
• J. Keener and J. Sneyd, Mathematical Physiology (Springer, New York, 2001)
• T. L. Hill, Free Energy Transduction and Biochemical Cycle Kinetics (Dover Publications, 2004)
• R. Nossal and H. Lecar, Molecular and Cell Biophysics (Addison-Wesley, Redwood City, 1991)
• T. D. Pollard, W. C. Earnshaw, and J. Lippincott-Schwartz, Cell Biology, second edition (Spektrum Verlag,
2007)

Räume und Zeiten

Keine Raumangabe
Montag: 10:00 - 11:30, wöchentlich

Kommentar/Beschreibung

Inhalte (Teil 1):
• Cell structure and organization. Molecules of life, structure-function relations. Importance of dynamics, spatial and time scales
• Molecular forces in biological structures. Entropic forces and importance of electrostatics. Energy scales. Molecular dynamics and visualization
• Global transitions in proteins. Two-state thermodynamical model , Arrhenius kinetics, and beyond
• Biochemical reactions: macroscopic enzyme kinetics and stochastic effects in real cells
• Gene-protein circuits (genetic regulation), genetic switches and oscillators