Allgemeine Informationen
Veranstaltungsname | Seminar: Blockseminar: Neural ODE and Generative Modelling für Master |
Veranstaltungsnummer | MTH-1360; MTH-1410 |
Semester | SS 2025 |
Aktuelle Anzahl der Teilnehmenden | 1 |
Heimat-Einrichtung | Mathematische Bildverarbeitung |
Veranstaltungstyp | Seminar in der Kategorie Lehre |
Veranstaltung findet in Präsenz statt / hat Präsenz-Bestandteile | Ja |
Hauptunterrichtssprache | englisch |
Literaturhinweise |
Literature - An introduction to deep generative modeling, Ruthotto, Lars and Haber, Eldad, GAMM-Mitteilungen, Wiley Online Library (2021) - A conceptual introduction to Markov chain Monte Carlo methods, Speagle, Joshua S,arXiv preprint (2019) - Neural ordinary differential equations, Chen, Ricky TQ and Rubanova, Yulia and Bettencourt, Jesse and Duvenaud, David K NeurIPS (2018) - Ffjord: Free-form continuous dynamics for scalable reversible generative models, Grathwohl, Will and Chen, Ricky TQ and Bettencourt, Jesse and Sutskever, Ilya and Duvenaud, David arXiv preprint (2018) - Diffusion models: A comprehensive survey of methods and applications, Yang, Ling and Zhang, Zhilong and Song, Yang and Hong, Shenda and Xu, Runsheng and Zhao, Yue and Shao, Yingxia and Zhang, Wentao and Cui, Bin and Yang, Ming-Hsuan, arXiv preprint (2022) - Applied stochastic differential equations, Särkkä, Simo and Solin, Arno, Cambridge University Press (2019) - Generative modeling by estimating gradients of the data distribution, Song, Yang and Ermon, Stefano, NeurIPS (2019) - Improved techniques for training score-based generative models, Song, Yang and Ermon, Stefano, NeurIPS (2020) - Score-based generative modeling through stochastic differential equations, Song, Yang and Sohl-Dickstein, Jascha and Kingma, Diederik P and Kumar, Abhishek and Ermon, Stefano and Poole, Ben, ICLR (2021) - Gotta go fast when generating data with score-based models, olicoeur-Martineau, Alexia and Li, Ke and Piché-Taillefer, Rémi and Kachman, Tal and Mitliagkas, Ioannis, arXiv preprint (2021) - Flow matching for generative modeling, Lipman, Yaron and Chen, Ricky TQ and Ben-Hamu, Heli and Nickel, Maximilian and Le, Matt, arXiv preprint arXiv:2210.02747 |